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Simulations with different lattice Dirac operators for valence and sea quarks
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We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a
“mixed” action approach is to probe deeper the chiral regime of QCD by enabling simulations with light
valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive
fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence
quarks. The local Symanzik action for this mixed theory is derive@®ta), and the appropriate low energy
chiral effective Lagrangian is constructed, including the leadMg) contributions. Using this Lagrangian one
can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting
them to the lattice data.
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[. INTRODUCTION quarks, are computationally demanding and the numerical
cost increases substantially with decreasing quark masses.
In order to extract predictions of QCD from numerical Realistically only the least expensive fermions, Wilson and
methods with controlled systematic errors, a lattice formulaKogut-Susskind, can be used on sufficiently large and fine
tion is required for which the sources of deviations fromlattices. Lattice fermions with better chiral properties are still
QCD are understood and are under control. A significantoo expensive to be used as sea quarks, and this situation is
source of systematic errors for present day lattice simulationsot likely to change in the near future. It is nevertheless
are the light quark masses. Even the most powerful compuexpected that the next generation of TFLOP machines will
ers today do not allow simulations with up- and down-quarkmake it possible to generate a few sets of unquenched con-
masses as light as realized in nature. Instead one simulatégurations with sea quarks light enough to be in the chiral
with heavier quark masses and fits the analytic predictionsegime.
obtained in chiral perturbation theoryPT) to the data. The To obtain more information from these configurations
free parameters in the fit are the low energy constan?d@@  they should(and will) be analyzed with various different
[1], and once they are determined an extrapolation to smallalence quark masses, i.e. by studying partially quenched
guark masses is possibl@,3]. Still, to perform the chiral (PQ QCD. By including lattice measurements with lighter
extrapolation the quark masses must be small enough so thealence quarks it is possible to penetrate further the chiral
xPT is applicable. In practice one would require that nextregime of QCD. This leads to more data points and would
to-leading order(NLO) yPT describe the data reasonably allow more reliable fits of PQPT[7] to the lattice dat§2].
well.t The reach of such simulations, however, is limited. The cost
The present lattice simulations do not meet this requireof light valence quarks also increases with the decreasing
ment[4—6]. The data do not show the characteristic curva-mass, and can become prohibitively high for quark masses
ture predicted by NLOYPT. In fact the data show a rather that are still not very small. This is particularly true for Wil-
linear behavior which either means that higher orders in theon fermions because of the explicit chiral symmetry break-
chiral expansion are not negligible or worse, one is not in théng by the Wilson term.

chiral regime at allsee Bernard’s part if]). In either case, An interesting idea for probing the chiral regime is to use
simulations with lighter quark masses are required in order tdifferent lattice fermions for the valence and sea quarks. In
apply xPT with confidence. particular, by choosing lattice fermions with good chiral

Lattice simulations with light fermions, especially sea properties for the valence quarks, the valence quark mass can
be made much smaller than in ordinary PQ simulations. A
central goal of this strategy is the same as of PQ QCD—to

*Email address: obaer@Ins.mit.edu explore a larger portion of the chiral regime by extracting
TEmail address: grupak@Ibl.gov more data points from a given set of unquenched configura-
*Email address: shoresh@bu.edu tions (see Fig. L This should result in more reliable esti-

At next-to-next-to-leading ordefNNLO) many new unknown Mmates for the low-energy constants @PT at NLO, the
parameters enter the chiral Lagrangian, which greatly reduces th@asser-Leutwyler coefficients. Furthermore, one might ex-
predictive power ofyPT. pect to reduce the size of explicit chiral symmetry breaking
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= Mg, that satisfy the Ginsparg-Wilson relation. To describe the lat-
my, 4 tice action close to the continuum limit we construct the
local Symanzik effective action up t6(a). The usual argu-
ments used in the formulation gfPT are then applied to
this effective action. This leads to a chiral expansion in
which the dependence on the lattice spacing is explicit.

PQ xPT
Il. THE CHIRAL EFFECTIVE ACTION
A. Lattice action
QCD Mixed
. Action In the following we always consider a hyper-cubic Eu-

clidean space-time lattice with lattice spaciagWe assume
either an infinite lattice or a finite lattice large enough that
one can safely ignore finite volume effects.

FIG. 1. Qualitative representation of the space of quark masses. 1€ Mixed lattice action that describis Wilson sea and

The “chiral regime,” where PQvPT can be applied, is the quarter- Nv Ginsparg-Wilson valence fermions has the structure
circular region. The upper right rectangle, limited by the dashed — _

line, describes the part of the space covered by present simulations.  Sw= Sym[U]+Swl #s, ¥s, U1+ Seul ¢y, v, U] (1)

As current data suggest, there is very little or no overlap between . . . .
that rectangle and the chiral regime. It is expected that improvemerl¢ denotes the gauge field defined on the links of the lattice,
in algorithms and computer power will allow reducing the sea andi/s (/) are the sea quartanti-quark fields andyy, (i)
valence quark masses in PQ simulations, as is represented by thenote vectors withly, anti-commuting valence quarkanti-
enlargement of the previous rectangle. It is possible that the chirajuarkg andN,, c-number-valued ghost quarkanti-quarks.
region will be penetrated by such simulations, as shown by the The precise choice for the gauge field acti®y, is irrel-
small section of overlap between the enlarged rectangle and thgyant in the following, so we leave it unspecified. For the sea

chiral region. Finally, using chiral valence fermions in a mixed quarks we choose the Wilson actifit?], given by
action simulation would make it possible to extend the reach of

simulations significantly in the direction of lighter valence quarks.

»
|

mSea

Sw= a4g Ps(Dy+ Mged ¥s(X), @)

by using Ginsparg-Wilson fermions at least for the valence
quarks. This is a computationally affordable compromise of 1
the lattice theorist's ideal of using Ginsparg-Wilson fermions DWZE{Y,L(VZﬁLVM)—aFVZVM)}, ©)
for both valence and sea quarks.

In this paper we construct the low-energy chiral effective\yheremsg,,denotes tha\; x N quark mass matrix in the sea
theory for a “mixed” lattice action, with explicit dependence gector andr the Wilson parameterv* , V, are the usual

on powers of the lattice spacirgby first constructing the ¢y ariant, nearest neighbor backward and forward difference
appropriate local Symanzik action. There are several reasonBerators.

for taking this approach. First, the defining non-orthodox * The action for the valence and ghost quarks is given by
feature of the mixed action approach—the use of different

Dirac operators for the sea and valence sectors—is purely a _

lattice artifact. This is a consequence of the fact that by con-  Sgw= a42 1//\,[ Dgowt Myy
struction all proper lattice fermions reproduce the same con- %

tinuum physics, and therefore all mixed lattice theories ré< e valence and ghost quark masses are contained in the
duce to PQ QCD in the continuum limit. An expansionain

is thus a natural tool to investigate potential peculiarities 012_ Ny>x2Ny  mass matrix my, of the form my
the mixed action formulation. Second, a theoretical under-_ diag(Mve, M) where My is an Nyx Ny matrix (i.e.
standing of thea dependence in lattice simulations can guideeaCh valence quarl§ has a correspoang ghost field with the
the continuum limit, or allow the extraction of physical in- same mags The Dirac operatoDgy is assumed to be a

formation directly from the lattice data, without taking the local operator satisfying the Ginsparg-Wilson relatjds]

continuum limit first. Third,yPT provides a useful frame- D vt D _
. . . =abDb Dcow- 5
work for studying the chiral symmetry breaking due to the YsEewT FewysT aewysEow ©

discrete space-time lattice. Effective theories of this typeggih the fixed-point Dirac operator and the overlap operator

have been studied in several similar conte@s11]. satisfy this relatiof14—16. For the following discussion,
What is dubbed here “mixed action methods” refers to apg\wever. there is no need to specidy,, any further.

class of lattice theories corresponding to different choices of
Dirac operators for the valence and sea quarks. In the next
section we use a fairly simple example to illustrate the gen-
eral framework of mixed lattice theories. We consider Wilson When mg,&=0, m\,=0, andr=0, the flavor symmetry
fermions for the sea quarks, together with valence fermiongroup ofSy, is

] py(X). (4)

1
1_ zaDGW

B. Flavor symmetry of the lattice action
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SU(N¢)L® SU(N§)r® SU(Ny|Ny) ® SU(Ny|Ny)g. ©

To see this it is convenient to writ8g;y, andS,y in terms of

chiral components. The right- and left-handed sea quark

fields are defined with the usual projectg(d = ys). For the

valence and ghost fields, one first defines the Hermitian op-

erator

¥5=vs(1—aDgw), (7)

which is unitary as a consequence of Eg). Valence right-
and left-handed fields are now defined [ly]

_ 1 1
v R= l/fvz(l_’)’s)a IJIV,R:E(1+ ¥s) v, (8)

_ 1 1
l//v,L:l//vE(l"‘ ¥s), ¢V,L:§(1_3’5)¢v- 9

The fermionic actions can now be rewritten as

i~ 1 . — 1
Sw=a'2 Ys1 5 YVt Vi) s L0+ Pisrz YV

— 1
+ V30 s r(X) + s | Mses™ EarVMV;) Psr(X)

— 1
+ ¢S,R( MEea Ea"TVMV;) s, L(X), (10

and

Sew= 342 JV,LDGW’ﬂV,L(X) +EV,RDGW¢V,R(X)

+JV,LmVaI by r(X) +EV,Rm¢/aI Py, L(X). (11
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+ + Tt
Mya— v, LMaly r:  Myg—9v,RMa 9y,

T T T T
Msea~0s L Msefsr:  Msea9srRMses L

(13

r—>gs,Lr9§,R, rT—’(EJS,R"TQE,L-

The mixed actionSy,, even with non-vanishing mass and
Wilson terms, is invariant under the combined transforma-
tions Eqs.(12),(13).

To complete this part we note that for a transformation to
be a symmetry of the theory it must also leave unchanged the
integration measure in the functional integral. It is a simple
matter to show that the measure for the sea Wilson fermions
is invariant under the global rotations in E4.2). The situ-
ation for the valence quarks is not quite so simple because of
the operatofys in the chiral variation. It turns out, however,
as has been shown in R¢fL8], that the measure is indeed
invariant under the symmetry transformations considered
here—the flavor non-singlet transformations. The last state-
ment can be extended to the full valence sector, including the
ghost fields

C. Symanzik action

We construct Symanzik's local effective theory which,
close to the continuum, describes the same long-range phys-
ics as the discrete lattice action well below the momentum
cutoff 1/a [21-24.

Since the continuum actio8g is designed to reproduce
the same long-range correlation functions as the discrete lat-
tice actionS,,, it must have the same symmetridg. (6)]
as the underlying theory. Up t6®(a), the quark operators
that enter are of mass dimensions 3, 4, and 5, which include
only quark bilinears. Moreover, the independent symmetry
transformations acting separately on the sea and valence sec-
tors requires that the quark bilinears do not mix the sectors.
This implies that up tad(a), the fermionic operators i

Here, for reasons that will become clearer shortly, we con{@S iNSu) are of two types—one built of sea quarks only and
sider Mo, My andr to be matrices in flavor space, and On€ Of valence quarks. _ .
identify the parameters that appear between right-handed !t i Straightforward to write down thé)(a) Symanzik
anti-quarks and left-handed quarks as their Hermitian conju@CtionSs using previous results concerning Wilson fermions

gates.
Clearly, whenmgg=my,=r=0, Eqgs.(10) and (11) are

[25,26 and Ginsparg-Wilson fermiongl7]. The details of
the analysis are deferred to Appendix A—here we only quote

invariant under independent global rotations of the left-the result(for the fermionic part of the action

handed and right-handed components of all quark fields:

lﬂx,Xng,Xlﬂx,X, EX,XHEX,XQJ(,)(: X:S:V; X:Ll?y)
12

wheregs, andgsg are inSU(N¢), while gy andgy  are

Ss= f d*X[ Yhy(D + Mya) oy + (D + Msed ths

+aCsWisT 4, F sl + O(a2). (14)

in S_U(NV|NV)- We conclude that flavor transformations be-  2rhe symmetry group that we write here is not the true symmetry
longing to the group in Eq6) are symmetries of the action group of the quantized theory. As discusse@li@, 20, the presence

Eqg. (1) broken by the mass ternms,, and mg., and the
Wilson termr.

of ghost fields in the functional integral leads to constraints on the
allowed symmetry transformations. However, for the derivation of

It is convenient to treat these symmetry breaking paramthe correct chiral Lagrangian it is possible to use the symmetry
eters as spurion fields, i.e. assuming the transformation rulegoup in Eq.(6) [20].
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My and Mg, are renormalized masses. Two consequenceBo and W, are dimensionful low-energy constants that ap-
of the exact chiral symmetry of the massless GinspargPear in the effective theory at leading ordsee Eq.(B1)].

Wilson fermions are(a) there is no Pauli ter@aMFww
for the valence sector, aritd) the valence quark mass is only

multiplicatively renormalized. No symmetry protects the
Wilson sea quarks from getting an additive correction of the

order of the cutoff 4.
It is useful at this point to collect the quark fields in a

They depend only on the high-energy scalg, and dimen-
sional analysis reveals that the perturbative expansion is in
factinmy/A, andaA . We follow Ref.[9] and choose the
{€,8} terms as leading ordéLO) and the{e?, e} terms as
NLO in the effective Lagrangian, droppir@(a?) contribu-
tions. The underlying hierarchy consistent with this ordering

IS

{e,8)>{€?,€8)}> 62, and the last inequality also implies
€= 6. This ordering is chosen for convenience and is some-
what arbitrary. In practice, the double expansion should be
organized according to the actual relative sizes of the quark
masses and the lattice spacing.

The effective Lagrangian is constructed from all operators
that respect the symmetries of the underlying ac8gnThe
compact notation of Eq(15) makes it easy to see that the
symmetry group ofSg to O(a) is

single quark field vectoW, and rewrite Eq(14) as

Sg= f V(D +m)V¥+Wacgyo,,F L,V +0(a?), (15

s Msea aCsw
gy | M= My |’ aCsw= 0]-

(16)

\If:

SU(N¢+Ny|Ny) ® SUN¢+Ny|Ny)g. (19

D. Symmetries ofSg and yPT for the mixed action . LA ~ . .
This symmetry groufgtreatingm anda as spurion fields

We now turn to the construction of a low-energy effective is the same as that of PQ QCD with Wilson fermions. Indeed
theory for the “underlying” Symanzik action in Eq(15).  the effective actiorSs in Eq. (15) is the same as the effective
The method is completely analogous to the construction o§ymanzik action for the PQ QCD Wilson action of Rgd],
the chiral Lagrangian in QCD27].% The idea is that the with a specific choice ofics,, that has support only in the
spontaneous breaking of the approximate chiral symmetrgea sector. This fortunate similarity between the mixed action
gives rise to light pseudo Goldstone bosons, the light metheory and the PQ QCD Wilson theory implies thia mixed
sons, which at low energies are the only relevant degrees @hw-energy chiral effective action has the same strugtate
freedom. The effective action is written in terms of local O(a), as the action of WilsoryPT, introduced inRef. [9],
interactions of the pseudo-Goldstone fields. Since theyith the restriction that agy vanishes in the valence-ghost
pseudo-Goldstone bosons interact weakly at low energiesector The chiral Lagrangian t6)(a), which describes both

the action can be organized in a perturbativ_e series. WyxPT and the mixed effective theory, is provided in Appen-
All observables calculated are expanded in two small pagix B.

rameters,
p2 3 3 E. Application: Meson mass
~—~— and 6~—, 7 In this subsection we give an example for the use of the
Ay Ay Ay mixed chiral Lagrangian. For simplicity we take all the sea

quarks and all the valence quarks to (separately degen-
erate, and the Wilson parameter to be a flavor singlet in the
sea sector. This amounts to setting

wherep is the light meson momentun\,~1 GeV is the

chiral symmetry breaking scale, antlanda stand for ma-
trix elements of i A
a=diag a,0).

m=diag Msea Mya), (20)

m=2B,m, a=2Wyacsy. (18

The number of sea quark flavors is taken toNhe=3. We
consider the expression for the mass of the flavor charged
meson with valence quark flavor indica8(A+ B) to NLO.

3t should be noted that as of yet the construction of PQ '~ . . N .
YPT from PQ QCD is not as well justified as the standard deriva-Using the relation between the mixed chiral effective theory

tion of yPT from QCD. The arguments of the latter cannot be@nd WyPT, one can obtain the result stralghtforwardly by

trivially extended to PQ QCD because they rely, in part, on thetaking the mass formula from RdB] with the values fom

existence of a Hilbert space of physical states with a positive defignda given by Eq.(20). We find

nite norm, which is absent in the presence of ghost fields. The same

is also true for the mixed action. The validity of théT for the R

mixed action is thus on the same footing as that of I, which (M,ZAB)NLO: Mg+ ———

has been discussed [i20]. 48f°m
“Though the notation might obscure this fatt,anda both have -

mass dimension 2—they are the leading contributions to the —é)ln(ﬁ1\,a|)]— Myal

squared mass of the pseudo Goldstone boson. We nevertheless use f2

this notation as it makes the dependence on the quark masses and

the lattice spacing more transparent.

[mVaI_ Mges—a+ (szaI_ Msea

[(Ls—2Lg)Myy+3(Ly

—2Lg)Mseat 3(W,—Wg)al]. (21)
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Here, the parameterk; are the Gasser-Leutwyler coeffi- Gasser-Leutwyler coefficients. Furthermore, the use of chiral
cients, andw, andW;g are additional low-energy constants lattice fermions in the valence sector, instead of Wilson fer-
that enter the chiral Lagrangian at NLO. Note thatder0 ~ Mions, makes it possible to simulate much lighter valence
the expression for PQPT (calculated in[2,28,29) is re- quarks. This leads to more da.ta points obtained on the lattice
covered. and consequently to more reliable f|t§;(dPT to the data.
Equation (21) demonstrates the analytic connection be- Here we have demonstrated the mixed action approach for

tween QCD and the simulated mixed action theory. It show Wilson sea quarks and Ginsparg-Wilson valence quarks tak-

the latter to be a calculation with controlled systematic ejng into account the leading(a) contributions. An impor-

o . ) tant extension of this analysis is the inclusion®fa?) ef-
rors. From fitting the equation to the appropriate data fro”\‘ects. First of all, the lattice spacing determined by the

numerical simulations one can obtain an estimate for thenqenched configurations is possibly not small enough to
Imearl cqmblnatlons of Gasser-Leutwyler coefficients that APsafely neglect the)(a?) corrections. If one wants to fit the
pearin it. _ ~ lattice data directly to equations like E@1) without taking
Examining Eq.(21) one can also appreciate the potentialthe continuum limit first, the®(a?) corrections should be
advantage of using a mixed lattice action. In simulations Usincluded to obtain better fits. Second, tiga) effects are
ing Wilson fermions in both sea and valence sectors, a@enerated here on|y by the Wilson sea quarks_ Many un-
equation similar to Eq(21) holds [see Eq.(BS)]. In that  quenched simulations are in fact performed with non-
case, the range of valence quark masses that can be simyerturbatively®(a)-improved Wilson fermions for the sea
lated might be too small to convincingly show the curvaturequarks. The leading corrections for these simulations are of
coming from the quadratic dependence and the Iogarithm@(aZ) and need to be computed in order to know how the
that enter at NLO. By using Ginsparg-Wilson fermions for continuum limit is approached.
the valence quarks one can vary the valence quark masseshile valuable, it should also be noted that the inclusion
over a wider range. The expected NLO curvature, on whickhf 0(a?) effects in the chiral Lagrangian framework is likely
the extraction of the Gasser-Leutwyler coefficients dependsg pe a hard task. The main difficulty arises from the many
is consequently much more likely to be seen. new operators that enter the Symanzik action at this order.
Finally, comparison with the result for WPT, Eq.(B5),  Some of these operators break Lorentz invariance, while sev-
reveals that the latter depends on twice the numbeWpf era| others break the chiral symmetry and require the intro-
coefficients. This is fortunate for the mixed theory as itduction of additional spurion fields.
makes the predictions of the effective theory less dependent The approach proposed here should be also studied with
on parameters that have no particular relevance to QCD. other combinations for the lattice fermions. In particular, the
To understand this simplification in the expression for thecase with staggered sea quarks is interesting, since staggered
meson mass, consider the relation between the symmetries gfrmions are computationally cheaper. At present the lightest
the mixed action and those of PQ Wilson action. On the Oanynamicaj quark masses are achieved with Staggered fermi-
hand the massless mixed theory has exact chiral Symmetry EhS. It is well known that app|y|ng Staggered fermions to
the valence sector, which the Wilson action does not. On thQCD involves a theoretical uncertainty and is possib|y un-
other hand, the valence and sea quarks of the Wilson actiogontrolled. Consequently, predictions from chiral perturba-
have the same type of Dirac operator which allows mixingtion theory for staggered fermions would also serve as a test
between the sectors—a transformation which is not a symof this discretization methof].
metry of the mixed action formulation. AD(a), however, Finally, the cost of simulations of a mixed action is
the breaking of the sea-valence symmetry in the mixed'ougmy the sum of the cost of generating a set of un-
theory does not yet show up, and thus the simpler expregguenched gauge field configurations plus that of analyzing

sions arise due to the larger chiral symmetry. quenched simulations with Ginsparg-Wilson fermions. Thus,
we can expect that in the near future simulations with a
. SUMMARY mixed action will become feasible.
In this paper we discuss lattice simulations with different ACKNOWLEDGMENTS

fermions for sea and valence quarks. As a particular example
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stated in the text, to this order the Symanzik action is simply Due to the exact chiral symmetry the valence quark mass
the sum of the local effective actions for the valence and thgets renormalized only multiplicatively and the Pauli term is
sea sectors. absent. Consequently, after considering the renormalizations
The local Symanzik action for Wilson fermions has beenof gauge coupling and quark masses, the Symanzik action
derived in[25,2€. One first lists all the operators of mass for the valence Ginsparg-Wilson quarks contains (@)
dimension no greater than 5, which respect the symmetriggart [the Ginsparg-Wilson lattice action is automatically
of the Wilson lattice actior{the appropriate power ad is  O(a) improved[17]]:
inserted to complete the dimensions of terms in the Lagrang-
ian to 4. The operators of dimension @vhich area inde- — - )
pendent make up, by construction, the continuum action of f d*X[ (D +mya) v+ O(a%). (A2)
QCD.
Becgqse the Wilson term explicitly breaks the_qhiral SYM-Equation(14) is the sum of Eq(A1) and Eq.(A2).
metry, it is expected that the quark mass be additively renor-
malized, and the size of the correction should be of the order
of the cutoff scale H. Indeed, the only dimension 3 operator

is ¢, which appears in the action with a coefficient propor-  We present the WPT Lagrangian which also describes
tional to 1A and has precisely this effect. the mixed theory t@(a). Interested readers should consult
There are several operators of mass dimension 5 that aRef. [9] for further details on WPT. We also provide the
allowed by the symmetries. Some of these operators can hgxpression for the mass of a flavor charged meson for com-
eliminated using the leading order equations of motion. Othparison with the mixed theory result.
ers have the same structure as the mass and kinetic operatorsThe WyPT Lagrangian is constructed out of operators
that already appear in the QCD action, and have the effect ahat respect all the symmetries of the underlying theory in
renormalizing the quark masses and the gauge coupling. Fiq. (15), with explicit flavor axial symmetry breaking terms
nally, a single term is left—the Pauli ternio,,,F ,,4. Note  constructed out ofn anda. As described in the text, the LO
that the Pauli term breaks the chiral symmetry, and is theretagrangian is linear ire and é:
fore allowed only because of the Wilson term. Putting it all
together, the Symanzik action for the Wilson sea sector is

APPENDIX B: W xPT RESULTS

f2 2 . . A
£2=Z<&EaET>— Z((m+a)2T+2(mT+aT)>.
J d*X[ (D + Mgen s+ aCswilso ,,F s+ O(a?), (B1)
Al
(A1) Here the angled brackets stand for the super-trace over the
wherems,,is the renormalized sea quark mass, aggis an  flavor indices:
unknown coefficient.
The analysis for the Ginsparg-Wilson valence quarks is
similar. This may seem confusing due to the fact that some of
the chiral projectors on the lattice are written in termsyef

(F)=Str(F)=Ei 7ilii,

and notys as in the continuum theory. However, it has been oo :
shown in Refs.[30,31], that the chiral symmetry of the ni= L |. |.saquark flavor |.ndex, (B2)
Ginsparg-Wilson lattice action leads to exactly the same chi- —1, i isaghostflavorindex,

ral Ward identities which appear in the continuum. Hence, by

imposing the usual chiral symmetry on the Symanzik actionand 3, = exp(4T1/f) is a non-linear representation of the me-
the effective theory correctly reproduces the consequences gbn fields.

the lattice chiral symmetry. The NLO Lagrangian &

L4=—L(d%031)2 =L x(9,30,52"(3,30,5T) = La((92 9312+ Ly(dS o= HmS T+ Smh) + W,y (a3 a5 T)(as T+ ah)
+Lg(aZ a3 (mET+3m)) + Wg(a2 3 (a3 T+3ah)) —Lg(mS T+ I mN2—We(msT+Emf) (a3 +3a')

—LAmST=3mN2—wW,(msT-3m (a3 -3a") —Lg(mETm3 T+ 3m'Emh—wWy(as'my T+ sa'>mf).  (B3)

These Lagrangians describe both the mixed and the PQ Wilson lattice actions. In the mixedathesrgupport only in the

5There has been an error in RE] in the sign of some of the terms ifi,. The form that appears here is the correct one.
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sea-sea sector. We comment that E&l), (B3) contain ordinaryyPT. Moreover, since the low-energy constabts and

W.’s are independent ah anda and this theory becomes the familigPT in the sea-sea sector whan-0, thel;’s are
exactly the Gasser-Leutwyler coefficients of ordingiyT.

Next, we provide the WPT expression for the mass of the flavor charged meson defined in Sec. Il E. We consider the case
where

m=diag Msea M),  a=diag ases ava) (B4)
[compare with Eq(20)]. One obtains
(M Ava))
48f 272

Myal - - - Bay ~
2 [(Ls—2Lg) Myt 3(Ls—2L6) Msest 3(Ws—Wg)ased — T[(LS“LWS_ 2Wg)Myy+3(L4

(M&g)nLo= (Myg+ Bya)) + [(Myar+ Bval) — (Msegt Ased + (2(Mya+ ava) — (Mseat Bsed)IN(Myg+ Ay ]

— W) Mged.- (B5)

To obtain the expression appropriate for common lattice simulations, in which the Wilson term is the same for all flavors, one
setsay, = ase,in the last equation. The meson mass for the mixed a¢fmp (21)] can be obtained by settiray,,=0.
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